Skip to main content

MusicGen Music Generator

Generate original music compositions using Meta's MusicGen model with advanced features including audio continuation, multiple model versions, and precise sampling control for professional music production.

API Endpoint

POST /api/features

Parameters

ParameterTypeRequiredDescription
typestringYesMust be "MUSIC_GENERATOR"
modelstringYesMust be "meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb"
conversationIdstringNoConversation ID for context
promptObjectobjectYesMusicGen-specific parameters

Prompt Object Parameters

ParameterTypeRequiredDescription
model_versionstringYesModel size: "stereo-melody-large", "stereo-large", "melody-large", "large"
promptstringConditionalText description (required if no audioUrl)
audioUrlstringConditionalAudio file URL for continuation (required if no prompt)
durationnumberYesDuration in seconds (1-30)
output_formatstringYesOutput format: "mp3" or "wav"
normalization_strategystringYesAudio normalization: "loudness", "clip", "peak", "rms"
temperaturenumberNoSampling temperature (default: 1.0)
top_knumberNoTop-k sampling (default: 250)
top_pnumberNoTop-p sampling (default: 0, disabled)
classifier_free_guidancenumberNoCFG scale (default: 3.0)
seednumberNoRandom seed for reproducibility
multi_band_diffusionbooleanNoEnhanced audio quality (disabled for stereo models)
continuationbooleanNoEnable audio continuation mode
continuation_startnumberConditionalStart time for continuation (required if continuation is true)
continuation_endnumberConditionalEnd time for continuation (-1 for full audio)

Model Versions

VersionChannelsFeaturesBest For
stereo-melody-largeStereoMelody conditioning, largest modelHigh-quality stereo with melody input
stereo-largeStereoLarge model, stereo outputHigh-quality stereo music
melody-largeMonoMelody conditioning, large modelMelody-guided generation
largeMonoStandard large modelGeneral music generation

Key Features

Audio Continuation

  • Continue Existing Audio: Extend audio files seamlessly
  • Melody Conditioning: Use audio as melodic reference without continuation
  • Precise Control: Specify exact start/end points for continuation

Advanced Sampling

  • Temperature: Control randomness and creativity
  • Top-k/Top-p: Fine-tune token selection for quality vs diversity
  • Classifier-Free Guidance: Balance prompt adherence vs creative freedom
  • Seed Control: Reproducible results for consistent output

Interactive API Testing

API Playground

https://api.1min.ai/api/features

Generated cURL Command:

curl -X POST "https://api.1min.ai/api/features" \
-H "API-KEY: <your-api-key>" \
-H "Content-Type: application/json" \
-d '{
"type": "MUSIC_GENERATOR",
"model": "meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
"conversationId": "MUSIC_GENERATOR",
"promptObject": {
"model_version": "stereo-melody-large",
"prompt": "upbeat electronic music with synthesizer leads and driving bass",
"duration": 10,
"output_format": "mp3",
"normalization_strategy": "loudness",
"temperature": 1,
"top_k": 250,
"top_p": 0,
"classifier_free_guidance": 3,
"multi_band_diffusion": false,
"continuation": false
}
}'

Response Format

Successful requests return:

{}

Advanced Features

Multi Band Diffusion

  • Enhanced Quality: Improves audio fidelity and reduces artifacts
  • Compatibility: Only works with mono models (not stereo models)
  • Trade-off: Longer generation time for better quality

Audio Continuation

  • Seamless Extension: Continue existing audio files naturally
  • Melody Conditioning: Use audio as melodic reference without continuation
  • Precise Control: Specify exact segments for continuation

Sampling Parameters

Temperature (0.1-2.0)

  • Low (0.1-0.7): More conservative, predictable results
  • Medium (0.8-1.2): Balanced creativity and coherence
  • High (1.3-2.0): More creative, less predictable results

Top-K Sampling (1-1000)

  • Low (1-50): Very focused, limited vocabulary
  • Medium (100-500): Balanced selection
  • High (500+): More diverse, potentially chaotic

Classifier-Free Guidance (1-10)

  • Low (1-3): More creative freedom, less prompt adherence
  • Medium (3-5): Balanced prompt following
  • High (6-10): Strict prompt adherence, less creativity

Best Practices

  1. Model Selection: Use stereo models for final production, mono for experimentation
  2. Duration Limits: Keep within 1-30 seconds for best quality
  3. Prompt Clarity: Be specific about instruments, style, and mood
  4. Parameter Tuning: Start with defaults, adjust based on results
  5. Continuation Setup: Ensure audio files are clean and properly formatted

Example Requests

Electronic Music Generation

{
"type": "MUSIC_GENERATOR",
"model": "meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
"promptObject": {
"model_version": "stereo-melody-large",
"prompt": "energetic electronic dance music with pulsing synthesizers, heavy bass drops, and crisp hi-hats",
"duration": 15,
"output_format": "wav",
"normalization_strategy": "loudness",
"temperature": 1.2,
"top_k": 200,
"classifier_free_guidance": 4
}
}

Classical Music with High Quality

{
"type": "MUSIC_GENERATOR",
"model": "meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
"promptObject": {
"model_version": "large",
"prompt": "elegant classical piano piece in minor key with emotional crescendos and delicate arpeggios",
"duration": 20,
"output_format": "wav",
"normalization_strategy": "peak",
"temperature": 0.8,
"top_k": 150,
"classifier_free_guidance": 3.5,
"multi_band_diffusion": true
}
}

Audio Continuation

{
"type": "MUSIC_GENERATOR",
"model": "meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
"promptObject": {
"model_version": "stereo-large",
"audioUrl": "https://example.com/audio.wav",
"continuation": true,
"continuation_start": 10,
"continuation_end": 20,
"duration": 10,
"output_format": "mp3",
"normalization_strategy": "loudness",
"temperature": 1.0,
"classifier_free_guidance": 3
}
}

Technical Specifications

Input Requirements

  • Audio Files: WAV, MP3, M4A formats supported
  • Sample Rate: Automatically resampled to model requirements
  • Duration: Input audio can be any length, continuation segment specified

Output Specifications

  • Sample Rate: 32kHz for all models
  • Bit Depth: 16-bit for MP3, 32-bit float for WAV
  • Channels: Mono or stereo depending on model version

Performance Considerations

  • Generation Time: Varies by duration and model version
  • Memory Usage: Larger models require more computational resources
  • Multi Band Diffusion: Increases generation time by ~50%