Flux Canny Dev - Image Text Editor
Development-grade edge-aware AI image editing model optimized for experimentation and advanced edge detection workflows. Flux Canny Dev offers comprehensive parameter control for developers and researchers working with edge-based image transformations.
Endpoint
Request Headers
| Field | Value |
|---|---|
| API-KEY | <api-key> |
| Content-Type | application/json |
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
type | string | Yes | Feature type identifier. Must be IMAGE_EDITOR |
model | string | Yes | AI model identifier. Must be black-forest-labs/flux-canny-dev |
promptObject | object | Yes | Configuration object containing all image editing parameters |
Prompt Object Parameters
| Parameter | Type | Required | Description | Default |
|---|---|---|---|---|
imageUrl | string | Yes | Path to the source image to be edited | - |
prompt | string | Yes | Text description of the desired image transformation | - |
num_outputs | number | No | Number of images to generate (1-4) | 1 |
num_inference_steps | number | No | Number of denoising steps for quality | 28 |
guidance | number | No | How closely to follow the prompt (1.0-20.0) | 3.5 |
seed | number | No | Random seed for reproducibility (0-4294967295) | 0 |
output_quality | number | No | Output image quality (1-100) | 80 |
disable_safety_checker | boolean | No | Disable content safety filtering | false |
megapixels | string | No | Output resolution (1, 0.25) | 1 |
format | string | No | Output image format (webp, jpg, png) | webp |
Code Examples
- cURL
- JavaScript
- Python
curl -X POST "https://api.1min.ai/api/features" \
-H "API-KEY: <api-key>" \
-H "Content-Type: application/json" \
-d '{
"type": "IMAGE_EDITOR",
"model": "black-forest-labs/flux-canny-dev",
"promptObject": {
"imageUrl": "development/images/2025_02_16_15_42_40_711_human.jpg",
"prompt": "Create detailed line art with enhanced edge detection",
"num_outputs": 2,
"num_inference_steps": 50,
"guidance": 5.0,
"seed": 42,
"output_quality": 90,
"disable_safety_checker": false,
"megapixels": "1",
"format": "webp"
}
}'
fetch('https://api.1min.ai/api/features', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'API-KEY': 'YOUR_API_KEY'
},
body: JSON.stringify({
type: 'IMAGE_EDITOR',
model: 'black-forest-labs/flux-canny-dev',
promptObject: {
imageUrl: 'development/images/2025_02_16_15_42_40_711_human.jpg',
prompt: 'Create detailed line art with enhanced edge detection',
num_outputs: 2,
num_inference_steps: 50,
guidance: 5.0,
seed: 42,
output_quality: 90,
disable_safety_checker: false,
megapixels: '1',
format: 'webp'
}
})
})
import requests
url = "https://api.1min.ai/api/features"
headers = {
"Content-Type": "application/json",
"API-KEY": "YOUR_API_KEY"
}
data = {
"type": "IMAGE_EDITOR",
"model": "black-forest-labs/flux-canny-dev",
"promptObject": {
"imageUrl": "development/images/2025_02_16_15_42_40_711_human.jpg",
"prompt": "Create detailed line art with enhanced edge detection",
"num_outputs": 2,
"num_inference_steps": 50,
"guidance": 5.0,
"seed": 42,
"output_quality": 90,
"disable_safety_checker": False,
"megapixels": "1",
"format": "webp"
}
}
response = requests.post(url, headers=headers, json=data)
Interactive Playground
API Playground
https://api.1min.ai/api/featuresPath to the source image to be edited
Description of desired edge-aware edits
Number of images to generate (1-4)
Number of denoising steps (1-100)
How closely to follow prompt (1.0-20.0)
Seed for reproducible results (0-4294967295)
Image quality level (1-100)
Disable content safety filtering
Output image resolution
Output image format
Generated cURL Command:
curl -X POST "https://api.1min.ai/api/features" \
-H "API-KEY: <your-api-key>" \
-H "Content-Type: application/json" \
-d '{
"type": "IMAGE_EDITOR",
"model": "black-forest-labs/flux-canny-dev",
"promptObject": {
"imageUrl": "development/images/2025_02_16_15_42_40_711_human.jpg",
"prompt": "Create detailed line art with enhanced edge detection",
"num_outputs": 1,
"num_inference_steps": 28,
"guidance": 3.5,
"seed": 42,
"output_quality": 80,
"disable_safety_checker": false,
"megapixels": "1",
"format": "webp"
}
}'
Response Format
Success Response (200)
{
"aiRecord": {
"uuid": "ac32acf4-0b2e-400e-9edf-cb3086c30a2c",
"userId": "c937fbcc-fa8f-4565-a440-c4d87f56fcb2",
"teamId": "a4e176b2-dabb-451e-9c58-62b451fa9630",
"teamUser": {
"teamId": "a4e176b2-dabb-451e-9c58-62b451fa9630",
"userId": "c937fbcc-fa8f-4565-a440-c4d87f56fcb2",
"userName": "John Doe",
"userAvatar": "https://lh3.googleusercontent.com/a/ACg8ocLqgsNsHRfmWF9d-E1RvJetVsEzxNOsOg-NXWNTpMxLDPJbwELI=s96-c",
"status": "ACTIVE",
"role": "ADMIN",
"creditLimit": 100000000,
"usedCredit": 8164605,
"createdAt": "2025-10-20T04:13:40.847Z",
"createdBy": "SYSTEM",
"updatedAt": "2025-10-27T05:06:17.651Z",
"updatedBy": "SYSTEM"
},
"model": "black-forest-labs/flux-canny-dev",
"type": "IMAGE_EDITOR",
"metadata": null,
"rating": null,
"feedback": null,
"conversationId": null,
"status": "SUCCESS",
"createdAt": "2025-10-27T08:43:17.647Z",
"aiRecordDetail": {
"promptObject": {
"seed": 42,
"format": "webp",
"prompt": "Create detailed line art with enhanced edge detection",
"imageUrl": "development/images/2025_02_16_15_42_40_711_human.jpg",
"guidance": 5.0,
"num_outputs": 2,
"output_quality": 90,
"disable_safety_checker": false,
"megapixels": "1",
"num_inference_steps": 50
},
"resultObject": [
"development/images/2025_10_27_15_43_26_155_702365.webp",
"development/images/2025_10_27_15_43_26_156_702366.webp"
],
"responseObject": {}
},
"additionalData": null,
"temporaryUrl": [
"https://s3.us-east-1.amazonaws.com/asset.1min.ai/development/images/2025_10_27_15_43_26_155_702365.webp?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIAVRUVQEFIHSKAXGE7%2F20251027%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20251027T084331Z&X-Amz-Expires=604800&X-Amz-Signature=5a66ff004deed5654ac44a823be7c4d1c8850503cb66a4445ce745c5caec5525&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject",
"https://s3.us-east-1.amazonaws.com/asset.1min.ai/development/images/2025_10_27_15_43_26_156_702366.webp?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIAVRUVQEFIHSKAXGE7%2F20251027%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20251027T084331Z&X-Amz-Expires=604800&X-Amz-Signature=5a66ff004deed5654ac44a823be7c4d1c8850503cb66a4445ce745c5caec5525&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject"
]
}
}
Use Cases
- Edge detection research: Experiment with different edge detection algorithms and parameters
- Line art generation: Create multiple variations of line drawings from photographs
- Technical drawing development: Generate precise technical illustrations with edge emphasis
- Artistic experimentation: Explore creative edge-based transformations and effects
- Batch processing workflows: Generate multiple edge-processed variations for comparison
- Computer vision preprocessing: Prepare images for edge-based computer vision tasks
Tips for Best Results
- Generate multiple outputs: Use 2-4 variations to explore different edge interpretations
- Higher inference steps: Use 50-100 steps for research-quality edge detection
- Fine-tune quality settings: Higher quality (90-100) for detailed edge work
- Experiment with guidance: Lower values (2-4) for subtle edges, higher (6-10) for bold lines
- Use appropriate resolution: 1 MP for detailed edge work, 0.25 MP for fast iteration
- WebP for line art: Excellent compression for edge-heavy content
- Document edge parameters: Save successful configurations for consistent results
- Progressive refinement: Start with lower settings, increase for final detailed output